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Abstract—We present DevStaR, an automated computer vision
and machine learning system that provides rapid, accurate, and
quantitative measurements of C. elegans embryonic viability in
high-throughput (HTP) applications. A leading genetic model
organism for the study of animal development and behavior,
C. elegans is particularly amenable to HTP functional genomic
analysis due to its small size and ease of cultivation, but the lack
of efficient and quantitative methods to score phenotypes has
become a major bottleneck. DevStaR addresses this challenge
using a novel hierarchical object recognition machine that rapidly
segments, classifies, and counts animals at each developmental
stage in images of mixed-stage populations of C. elegans. Here,
we describe the algorithmic design of the DevStaR system and
demonstrate its performance in scoring image data acquired in
HTP screens.

Index Terms—C. elegans, computer vision, high-throughput phe-
notyping, object recognition.

I. INTRODUCTION

C. elegans is one of the major model organisms used to study
fundamental questions in animal development and neurobi-
ology [1]. C. elegans was the first animal to have its genome
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completely sequenced [2], providing new opportunities for
genome-wide analyses. For example, gene knockdown screens
using RNA interference (RNAi) have been used to assess
in vivo function for most of the 20 000 genes encoded in
its genome [3], leading to the identification of entire sets of
genes required for many key developmental and physiological
processes in this organism [4].
Because it is small ( 1 mm as a mature adult) and can be

cultured in liquid media in 96- or 384-well plate formats, C. el-
egans is highly amenable to a variety of high-throughput (HTP)
functional genomic analyses. Numerous technical innovations
in assay systems, robotic sample manipulation, and reagent li-
braries [5], [6] have rendered genome-wide HTP phenotypic
screens increasingly feasible: with assistance from liquid han-
dling robots, it is now possible to conduct thousands of exper-
iments per week on intact organisms to assay different combi-
nations of environmental and genetic perturbations.
The output of HTP phenotypic screens is often image data

that must be analyzed to score resulting biological effects, such
as viability, fitness, morphology, or behavior. Phenotypic anal-
ysis is the most challenging aspect of a large-scale screen and
is usually rate limiting, since it typically requires expert manual
annotation. This tends to be a painstaking process that is slow,
qualitative, and potentially error-prone.
The burden of analyzing phenotypic readouts from HTP

platforms can be alleviated by the application of image analysis
software that can extract quantitative features from image data.
Because analyzing bright-field images is very challenging,
this task is commonly rendered more tractable by employing
fluorescent reporters that provide easily identifiable markers
of specific cell types, cellular compartments, or sub-cellular
structures. Fluorescent markers have been used in combination
with different image analysis tools to automatically extract
numerous morphological features and measure quantitative
phenotypes based on these “phenotypic characters” in the
single-celled yeast S. cerevisiae [7] and in cell lines from
Drosophila or human [8].
In whole-organism screens, one of the most fundamental phe-

notypes that can be assayed is survival or, conversely, lethality:
this simple readout is often used as the first measure of different
genetic or environmental perturbations, including temperature
or chemicals (i.e., small molecules and drugs). Most mechan-
ical steps required for HTP screening of C. elegans are rela-
tively straightforward to optimize and streamline, but a major
obstacle has been the lack of automated tools for the quantita-
tive analysis of complex phenotypes in image data. Over the last
few years, several groups have developed image analysis ap-
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Fig. 1. Examples of microscopic images of C. elegans. (a) Typical image pro-
cessed by DevStaR: a single well from a 96-well plate containing a C. elegans
population of mixed developmental stages. (b)–(d) Magnified views of different
developmental stages. (b) Embryos, seen as a clump of small dark ovals. (c)
Larvae. (d) Adult worm. (e) Occlusions and deformations of objects: overlaps
can represent different regions of a single animal or intersections between dif-
ferent individuals.

proaches to measure different aspects of C. elegans biology, in-
cluding adult morphology [9], locomotory behavior [10]–[13],
and embryonic cell divisions [14], [15].
Since a first-level goal of many HTP screening assays is to

assess developmental fitness, an efficient solution to this task
is central to progress in this field. So far, however, no software
solution addresses the problem of quantifying different develop-
mental stages in bright-field images of mixed-stage populations.
An alternative we considered is the COPAS BIOSORT (Union
Biometrica), a flow-sorting instrument that automates physical
sorting of C. elegans. However, this method is not practical for
HTP screening because the counting is too slow: according to
systems specifications, 35–150 individuals can be counted per
second, translating to 8–32 min per 96-well plate (excluding
sample preparation time, which further reduces throughput ef-
ficiency).
We have developed a hierarchical vision recognition system

to automatically and quantitatively measureC. elegans develop-
mental phenotypes from high-throughput microscope images,
which we call DevStaR (developmental stage recognition). De-
vStaR, to our knowledge, is the only software that can segment
and differentiate multiple developmental stages from images of
populations of C. elegans, and it provides the first truly feasible,
real-time solution for this highly relevant problem.
The specific problem we address is to recognize and count

each developmental stage within mixed-stage populations of
C. elegans animals, in order to determine fitness and viability.
Taking bright-field microscope images as input (Fig. 1), De-
vStaR labels each pixel in an image as one of four classes:

Fig. 2. Schematic of the DevStaR hierarchical recognition system for C. ele-
gans developmental stages. The machine contains five layers (Layers 0–4), each
comprising three steps (Units, Scores, Grouping). Units: Input units are the data
on which each layer operates. Scores: Vision algorithm computes a score for
each input unit based on explicit evaluation criteria. Grouping: Grouping vision
algorithm produces a higher-order representation of the input units based on
their scores and local topological relationships. The output of each preceding
layer (grouped data) is used as input (unit data) for each successive layer.

adult worm, larva, egg/embryo (used here interchangeably), or
background. DevStaR then outputs quantitative measurements
of classified objects that enable the calculation of lethality (or
survival) in each sample. This task is particularly challenging
both because illumination varies within and across images and
because complicated occlusions and deformations of the ani-
mals are common [e.g., see Fig. 1(e)]. Furthermore, the objects
may be in different focal planes since the animals are swim-
ming in liquid, and the focal length may differ between images
due to manual refocusing by the biologist. DevStaR addresses
several major hurdles in the analysis of these biological image
data using novel algorithmic solutions.
DevStaR is structured as a hierarchical object recognition

system comprising a series of layers (numbered zero to four)
that we call vision layers (Fig. 2). In each layer two vision
algorithms are applied that: (i) take input units (nodes of the
input graph) and perform an evaluation score on the units (typi-
cally using signal processing or a learning method), and then (ii)
group the units based on spatial properties (geometrical and/or
topological) and the evaluation score from (i), thus, reducing
the size of the output graph. For example, in layer 0 we ex-
tract intensity features and then use the geometrical properties
of circles to group the pixels that form the well. The grouping
transforms the preceding, lower-level representation of the data
(the input graph) into a new, higher-level representation (the
output graph, which will contain a smaller number of nodes
due to grouping). Thus, each layer outputs a new reduced graph
to feed as input to the next layer. In this sense, the hierarchy
presented here maybe viewed as a pipeline of sequential vision
layers, where each layer reduces the complexity of the data, due
to grouping, and thus delivers a new and more compact repre-
sentation of the data.
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DevStaR can be generalized to other image analysis problems
concerning populations of C. elegans, for example to discrim-
inate different larval stages or measure postembryonic growth
rates and viability. The individual layers of DevStaR may also
find application in other biological imaging problems: for ex-
ample the techniques developed in layer 3 could be useful for
recognizing morphological phenotypes of either whole animals
or cultured cells.
Here, we present a full description of DevStaR and its ap-

plication to HTP screening applications. We include a thorough
performance analysis and show that the current version of De-
vStaR improves upon our earlier work [16] in the techniques
used for several layers. Specifically, in Layer 1 we now apply a
background removal step followed by a thresholding procedure
to segment the image; we apply Layer 3 to all objects in the
image (instead of first separating small and large objects); and
in Layer 4 we output a count of animals at each developmental
stage (rather than pixel areas).
DevStaR has been integrated into the analysis pipeline for on-

going genome-wide HTP genetic screens in our Center, and so
far around two-dozen screens have been completed using au-
tomated DevStaR analysis as the primary scoring mechanism.
DevStaR runs on average in 15 s per 1200 1600 pixel image
on a single processor. For a 96-well plate, it takes about 1.5 min
to acquire one image per well, and the same amount of time to
analyze the images on a 16-core Linux box with 24 GB RAM.
Thus, data can be fully scored by DevStaR in essentially real
time.

II. BACKGROUND: VISUAL RECOGNITION IN IMAGE ANALYSIS

Understanding the content of an image is arguably the pri-
mary goal of computer vision and, despite many decades of
research, this challenge is far from solved. The main difficulty
in understanding images derives from the many sources of
variability in an object’s appearance, e.g., pose transforma-
tions, lighting effects, intra-class variation, and occlusions. In
addition, objects can be combined in a scene in an exponential
number of ways.
Recent work in recognition has focused on building complex

probabilistic models that explicitly model the many sources of
variability in an image [17], [18]. These models typically con-
tain many parameters, which are estimated from labeled sets of
training data using machine learning techniques. These systems
are not very complex: they are not hierarchical, and they typi-
cally rely on first applying a basic feature detector followed by
a learning machine to perform a single recognition task. In par-
ticular, shape information and occlusions are typically not ad-
dressed, and images with overlapping objects and deformations
are largely ignored [19], [20]. These systems would therefore
not perform well in our application.
In principle, learning techniques such as SVM [21], Boosting

[22], and Convolution Networks [19] can be applied to any data
and problem. In practice, however, many manual decisions and
intermediate steps are required, and these determine how well
the systems work. For example, in SVM learning, one has to
choose the features and the kernels; in Boosting, one has to
choose the set of weak learners; and in Convolution Networks,

one has to choose the number of layers and the proper architec-
ture for the connections.
Recently, “deep learning” models [23] have engendered ex-

citement. These are essentially hierarchical layered machines,
in which each “feature” layer performs its own learning in turn
[23]. While such models address some of the deficiencies of
the above-mentioned learning methods, much more progress is
needed in modeling hierarchical systems.
We note that a large number of effective algorithms used in

vision are not derived from learning theory. These include all
techniques based on signal processing (e.g., steerable pyramids
[24] and wavelets [25]), as well as more geometric based vision
methods (where spatial relations are at the core of the formu-
lation) such as: Hough Transforms [26], graph-based methods
(e.g., graph cuts [27], [28]), dynamic programming (e.g., [29]),
normalized cuts (e.g., [30]), and shape extraction (e.g., [31],
[32]). However, geometric based methods are typically applied
to a specific specialized task and individually are insufficient to
solve complex vision problems in real-world applications.
We argue that solutions to complex vision problems—in

which image variability is large and performance equivalent
to human interpretation is needed—will require combining
learning techniques with other state-of-the-art vision algo-
rithms. Moreover, we believe that developing methodology for
the hierarchical organization of processing layers—each emit-
ting successively higher-level units by applying a combination
of scoring (rooted on learning method or signal processing
methods) and grouping functions (rooted on spatial processes)
to the preceding units—is needed for building complex com-
puter vision systems. Our hierarchical design for DevStaR
follows these principles.

III. DEVSTAR HIERARCHICAL RECOGNITION SYSTEM

The analysis performed by DevStaR begins with a graph rep-
resentation of the image. A generic graph is represented by

, where is a vertex in the graph and is an edge in the
graph. In our application, the image is defined in a pixel graph

, where represents a pixel and stores the grey level,
and represents an edge between and its eight neighboring
pixels. The image grid is defined by the set .
The DevStaR hierarchy, shown in Fig. 2, is described below

in terms of the organization of the vision layers: Units, Scores,
and Grouping of the Units.

A. Layer 0: Attention (Area of Interest)

Layer 0 performs the initial task of choosing within each
image the area of interest (AOI) in which to perform the search
for objects. The objects are all inside the well, which has a more
or less circular shape in the image [see Fig. 1(a)].
Units: The nodes of the pixel graph .
Scores: The intensity at each pixel is stored in the nodes in

.
Grouping: We want to group the pixels inside the well .

We use a circle shape as the geometric constraint to group the
pixels. Note that the search method proposed here is rooted on
the geometric voting method of Hough transform. We define
“mean intensity” as the mean value of intensity for all pixels
along the circumference of a given circle, and we compute this
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Fig. 3. Examples of the output from each DevStaR layer produced upon application of its grouping mechanism. (a) Layer 0 output: a graph comprising
pixels inside the red circle, which define the AOI. (b) Layer 1 output: Segmentation of the image from (a) after background removal. (c) Magnified view of a large
object from (b) (yellow box). (d), (e) Layer 2 output: for the shape shown in (c), a tree graph , where nodes represent object parts and bifurcations, and
edges connect adjacent regions. (d) Shown are the best pair-wise matching of boundary pixels for the object (red), the midpoint of the match (blue), and bifurcations
that break the object into parts (green triangles). (e) Schematic of the tree graph , showing nodes (red dots) superimposed on their respective object
parts and bifurcations (blue) and edges connecting them (red lines). (f) Layer 3 output: Label assignment for each node of the Layer 2 tree graph from
(d), represented here by color: adult worm (red), embryo (green).

quantity for a range of radius values and center positions. For
each center position considered, two circles with incremental
radii are compared, and the signed difference in mean intensity
is stored. We are interested in identifying changes from bright
(high mean intensity) to dark (low mean intensity) values as the
radii increase. The best circle (group) within a range of center
positions and radii is defined as the outer circle representing
the highest negative change in mean intensity between adjacent
concentric circles.
Output Graph: We output the graph , which is the

graph restricted to the nodes and edges corresponding
to pixels inside the detected well (Fig. 3(a) shows an ex-
ample).
Parameters: The parameters that need to be considered are

the ranges of search for 1) the center position and 2) the ra-
dius of the circle. In this application, the ranges are fixed for all
images based on an estimate of their maximum variation from
a small sample of images (less than 100). The search ranges
for the center coordinates of the circle are –900 and

–700, and the range for radii is 550–940 pixels. Pairs
of x, y coordinates and radii were sampled in intervals of 10
pixels.

B. Layer 1: Background Removal and Segmentation of Objects

Layer 1 first models and extracts the background from each
image to allow accurate segmentation. Lightmicroscopy images
of multi-well plates contain large variations in intensity and con-
trast within and betweenwells, making background removal and
segmentation difficult. Several factors conspire to cause a large
but gradual decrease in intensity toward the edge of the well (see
Fig. 1 for an example), including shadows from the walls and
light diffraction by the meniscus (curvature of the liquid surface
due to wetting of the walls). Moreover, the variation in illumi-
nation differs depending on the exact alignment of the well and
settings of the microscope. These issues render the use of stan-
dard segmentation algorithms impractical, as the required pa-
rameters vary greatly both within and across images.
To overcome these challenges, we chose to remove the back-

ground by modeling the gradual changes in intensity as a con-
tinuous 3-D surface. We extract a model of the background for
each image to accommodate the unique landscape of intensity

Fig. 4. Examples from Layer 1: background removal and image segmenta-
tion. (a) Light microscopy image of a population of C. elegans. (b) Background
model, found by [36]–[38]. (c) Background model, found by layer 1. (d) Seg-
mentation results using background from (b). (e) Segmentation results using
background from (c). Results suggest layer 1 performs a good approximation of
the optimal solution.

variation. Another method that could be considered is the bias
field removal [33], which is based on the EM algorithm and thus
it is iterative and potentially slower. The approach we chose is
guaranteed to be fast (on the order of a second for each image).
Background removal enables us to accurately segment the ob-
jects across the well by a simple thresholding of the resulting
images, as shown in Fig. 4.
Units: The nodes of the graph .
Scores: Our goal is to fit a 3-D surface, , to the

background image data, ignoring foreground pixels. We use
robust statistics to fit a piecewise linear model to the data. More
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precisely, for a pair of neighbor pixels where
, we write the robust potential

where is the Heaviside function, i.e., if and
otherwise . For each pair of neighbor vertices and

states we have the “observed values”
and a piece-wise linear

model for

with weights

Note that the neighbors are not the first
pixel neighbors on the grid; they are pixels distant from each
other by a window size , i.e., and
so that a piecewise linear model is meaningful. The parameter
needs to be estimated. We only consider the four neighbors

where

The eventual goal is to infer the states given the observed
. The robust potential suggests that the

better is the fit of the linear model to the data, the smaller is the
potential. At places where the model does not fit well, i.e., the
error is above , the cost of the fit is simply . In this way object
pixel intensities are ignored during this procedure by assigning
a constant weight when the distance from the fit line to the
pixel intensity is large; this allows object pixels to be ignored
without incurring an enormous fitting cost.
Grouping: A Smoothing term is added to the robust potential

to group neighbor pixels and interpolate the data where back-
ground data is not available (at object pixels). We add the term

where neighbor states with similar state
values produce lower potentials, and controls the weight of
the smoothing. In summary, the rationale for each pixel is that:
1) if the pixel intensity is far from the background state, it is
because it belongs to the foreground and the model ignores this
data, and 2) if it is a background pixel, a straight line segment
between two neighbor state pixels separated by pixels should
fit the data well.

Fig. 5. Conversion of 2-D pixel graph into a tree graph. Left: 2-D pixel graph
shown over the image in red. Right: all vertical edges in 2-D pixel graph have
been removed except the ones in the column containing the root (yellow), cre-
ating a tree graph.

Finding the optimal background states solution is not possible
in polynomial time; since there are loops in the image grid graph
(edges connect all neighbor pixel nodes) and the robust statistics
potential on node pairs is nonconvex, i.e., this problem is NP
hard. We apply an approximation method. First we approximate
the pixel graph by removing some of its edges and eliminating
the loops, thus transforming the image graph into multiple tree
graphs. More precisely, the tree graph approximation is made
by creating one graph per node in , using the node as
the root of the tree. For each root node, the 2-D pixel graph is
made into a tree by removing all vertical edges except the ones
in the column containing the root (Fig. 5).
Second, we apply dynamic programming to this graph with

one pass. The algorithm begins on the leaves of the tree (pixels
on the image boundary) and moves toward the root node, where
the optimal cost solution is obtained (standard dynamic pro-
gramming forward algorithm). The running time of this algo-
rithm is 0.6 s per 1200 pixels 1600 pixels image on a 2.3-GHz
Linux box with 12 GB of RAM.
Other algorithms are available to find the approximate so-

lution to this NP hard problem, e.g., [34], [35]. A method de-
scribed in the set of papers [36]–[38] is of particular interest
since when it finds a solution it is guaranteed to be the op-
timal solution. Fig. 4(b) and (c) compares the background solu-
tion found using our approximation method to that found with
the optimal method from [36]–[38]. The background solutions
found are very similar, giving us evidence that our technique is
comparable to the optimal solution. Our solution is much more
efficient, taking less than a second to run on one image, where
as the optimal solution from [36]–[38] takes minutes to run on
one image on a 2.3-GHz Linux box with 12 GB of RAM.
Finally, once we have found the background state for the

sub-sampled pixel locations, we fit a B-spline to these points to
extract the entire background contour [Fig. 4(b) and (c)]. After
the optimal background states are obtained, they can be sub-
tracted or divided from the original image and a thresholdap-
plied to separate the regions containing objects from the back-
ground pixels [Fig. 4(d) and (e)].
Output Graph: The resulting output is a graph for each seg-

mented region, with nodes belonging to pixels within the seg-
mented region. We can describe the output simply by the region
boundary of each segmented region. Say an image has
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Fig. 6. Layer 2 Scoring function. (a) Shape boundary contour can be param-
eterized in two ways: counter-clockwise ( , green), and clockwise ( , red).
Each pixel from is evaluated for pairwise symmetry with each pixel from
. Measure of symmetry of two elements on the shape boundary is given by

a mirror symmetry score shown in (1). (b) are both perfectly symmetric to
, so the mirror symmetry score is zero. (c) Equivalent co-circularity mea-

sure where are both perfectly co-circular to , so the mirror symmetry
score is zero.

segmented regions. A segmented region can be represented by
, an ordered set of vertices representing the pixels at

the boundary of region and graph edges indicating a link be-
tween neighbor boundary pixels. The output is the union of all
segmented contours, i.e., .
Parameters: All parameters are chosen empirically. There

are few parameters and their meaning in the model is clear,
testing and modifying them worked well across all images so
more sophisticated techniques such as learning were unneces-
sary. For the robust potential, the parameter indicates the error
beyond which a foreground pixel is considered the local optimal
solution state and is fixed at for all images in our dataset.
Other parameters for the model are dictated by the size of the
image and the scale of the objects to be segmented; here, the
sampling interval between neighbor pixel-states is
pixels. The parameter is set to 4.

C. Layer 2: Object Parts

Layer 2 identifies and labels object parts. The inputs to this
layer are the segmented regions, .
These regions can consist of overlapping objects, which may
possibly have different labels. In this layer, we apply a shape
mechanism to break regions into object parts, so that if a single
region consists of multiple overlapping objects, the object parts
can be identified and labeled correctly. Currently we do this
using the symmetry axis method [31] to extract the symmetry
axis, or skeleton, of the shape [Fig. 3(d) and (e)].
Units: The set of segmented contours described by the graph

. For each region boundary
we have an ordered list of pixels. This list can be parameterized
in two ways: counter-clockwise with parameter or clockwise
with parameter , yielding and [Fig. 6(a)].
Scores: The symmetry scoring is created for each pair of

nodes in the graph based on a mirror symmetry or
equivalent co-circularity measure [Fig. 6(b) and (c)]. One can
define this measure as resulting from a match of a node in
with a node in , expressed as

(1)

where and are the node coordinates for the respec-
tive parameterizations, and are the corresponding unit

Fig. 7. Layer 2 Grouping mechanism and extension to multiple boundary
contours. (a) Dynamic programming algorithm described in [31] finds the best
pairwise matching of boundary contour pixels to obtain the optimal symmetry
pairing for a given object (here, two overlapping adult C. elegans). Shown are
the boundary contour pixels (red), every fifth matching pair (each connected
by a cyan line), the bifurcation points that break the object into parts (green
triangles), and the skeleton of each object part (dark blue lines). End of the
skeleton is where the optimal matching is a self-match (i.e., a pixel matching
to itself). The shape can now be represented as a tree graph , where
nodes represent object parts and bifurcations, and edges connect adjacent parts,
as shown in Fig. 3(e). (b) To extend the symmetry axis method in [31] to
objects with multiple boundary contours (here represented as concentric ovals),
we select the point in each contour where the two contours are closest together
(red arrows). We then apply a “topological surgery” (red lines) to link the two
shape boundaries, creating a final long unique boundary shape.

tangent vectors, is the dot product of two vectors, and de-
notes the orthogonal vector. Node pairs with more symmetry
receive lower scores, and perfectly symmetric elements have
score .
Grouping: We apply the dynamic programming algorithm

from [31] to find the best pairwise matching of boundary con-
tour elements to obtain the optimal symmetry pairing, taking
into account the score cost of (1) and a penalty (parameter )
for the number of object parts created. Fig. 3(d) and Fig. 7(a)
show examples of optimal symmetry pairings, where the mid-
point between two paired pixels on the object contour is the
skeleton of the object, and bifurcations of the skeleton break
the object into parts. In order to obtain a reasonable number of
skeleton branches and, equivalently, object parts for each ob-
ject, we need to automatically determine the best for each
segmented region.
Output Graph: For each region boundary , the

output of the grouping mechanism is a tree graph [e.g.,
Fig. 3(e)], where nodes represent object parts and bifurcations
in the skeleton and edges connect adjacent object parts and
bifurcations (nodes). Leaf nodes are object parts that contain
one self-match (i.e., a boundary pixel that matches to itself
and represents a skeleton endpoint). We refer to this tree graph
as , where a vertex represents part of an object
or a bifurcation and an edge connects adjacent object parts
and bifurcations. The tree representation, , is a
natural representation for the object categorization process.
Again, each of the region boundaries outputs one

.
Parameter: The parameter should scale with the size of

the region, as the cost of (1) will scale with the size of the re-
gion. To find the relationship between the optimal and object
size, we manually created supervised data by choosing the best
value of for objects of varying size (area/perimeter). The best
value of was selected as the value that gave rise to a skeleton
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closest to a manually annotated skeleton. We observed a linear
relationship between object size and optimal parameter value,
which we use to determine the for each object.
A problem with the symmetry axis method occurs when

shapes have holes, i.e., more than one boundary contour, as il-
lustrated in Fig. 7(a). This occurs quite often in our application,
due to overlaps of objects and even simply due to deformation
of a single object. Therefore, it was necessary to extend the
work in [31] to create a symmetry axis solution for shapes with
more than one boundary contour. Our insight was to select a
point in each boundary contour and then apply a “topological
surgery” to link the two shape boundaries, creating a final long
unique boundary shape [Fig. 7(b)]. The method extends to
multiple shape boundaries as follows: first apply it to a pair of
shape boundaries, merging them into one shape boundary via
the “topological surgery;” apply the method again by merging
the resulting shape boundary with another boundary shape;
repeat the procedure successively until all shape boundaries
have been merged.
In order to select to which pair of points the “topological

surgery” should be applied, a greedy method is used, selecting
the closest pair of points (in Euclidean distance) between two
boundary contours (Fig. 7(b), arrows). Once the merge of the
two boundary shapes is complete, we apply the same dynamic
programming algorithm as in [31] to the new unique boundary
shape. Fig. 7(a) shows a typical result.

D. Layer 3: Object Labeling

Layer 3 addresses the problem of object categorization. Our
object label categories are “embryo,” “larva,” or “adult worm,”
represented, respectively, as , 2, 3. We first focus on the
problem of labeling the object parts, since a given contiguous
region may contain overlapping objects of different categories
(thus, it may be necessary to output more than one object label
per object, which will be resolved to final categories later).
Units: Nodes in the object part tree graph .
Scores: We use an SVM learning method [21], [39] to train

three SVMs using the “one to one” multiclass SVM procedure.
Each SVM represents a preference between two alternative la-
bels in one pair of possible labels: (“embryo,” “larva”), (“em-
bryo,” “adult worm”), and (“larva,” “adult worm”).
Visual inspection of many object part examples suggested

that the shape characteristics that distinguish developmental
stages are their size, thickness, elongation, and the smoothness
of the boundary contour (which is informative since embryos
tend to form clumps with rough boundaries, as seen in Fig. 1).
We extract 13 features for each object part, derived from a
variety of shape characteristics: area, length of the symmetry
axis, length of the boundary contour, total change in width
(calculated as , where is the difference between the
widths of consecutive matches along the skeleton of the object
part), and the number of times that changes sign (this value
will be high for a “bumpy” boundary and low for a smooth
circle). Changes in width were calculated at three different
scales, considering “consecutive” skeleton matches at 1, 3, or 5
pixel intervals. We then use the “one to one” multiclass SVM
procedure for each of the three label pairs.

Fig. 8. Layer 3 object labeling by SVM and min-cut algorithms. (a) ROC curve
of the multiclass SVM technique: “adult worm” versus “egg” SVM (WE, red);
“adult worm” versus “larva” SVM (WL, green); “egg” versus “larva” SVM (EL,
blue). (b) An object consisting of a clump of embryos. Object parts are assigned
the “ajority vote” SVM label: “embryo” (green) or “adult” (red). The internal
region (white) comprises bifurcations. Note that the SVM incorrectly labels part
of the object. (c) The entire object is assigned a final category label (“embryo”)
after the min-cut algorithm corrects SVM labels and labels bifurcation areas.

To evaluate our SVMs, we performed 10-fold cross val-
idation using manually labeled object parts in 100 images,
including 100 000 object parts in total. The percent correct
labels for each SVM were “adult worm” versus “larva,” 93%;
“adult worm” versus “embryo,” 94%; and “embryo” versus
“larva,” 89%. Fig. 8(a) shows ROC curves for the three SVMs.
We expect lower performance for the “embryo” versus “larva”
SVM because it is more difficult to extract informative features
from these objects, which are often very small and contain few
pixels.
This procedure results in the construction of three new tree

graphs for the three SVMs, , where
(“egg” versus “larva”), (“egg” versus “adult worm”)

and (“larva” versus “adult worm”). The vertices and
edges in these graphs are the same as in the object part graph

, except that each node is assigned a score output
from the multiclass SVM procedure.
Grouping: When labeling object parts, errors in SVM label

scores can occur; in particular, small object parts are more easily
mislabeled due to their lower information content. However, the
tree graph provides additional information about the proximity
of object parts [Fig. 3(d) and (e)]. Our insight was to use this
proximity in the tree graph to better resolve the scores: typically
the nodes with scores that would give the wrong label had neigh-
boring nodes with stronger scores that carried more discrimina-
tive power, and so could be used to help correct the score of their
neighbor [Fig. 8(b) and (c)]. To accomplish this, we also make
the graph a directed graph, where neighboring ob-
ject parts that are connected are now connected by two directed
edges.
In order to produce final scores that exploit this neighbor

structure, for each SVM tree (indexed by , 2, 3) we add
a sink and a source node to the graph, with edges to
each node in weighted according the SVM output,
and we apply the min-cut algorithm [27], [28]. More precisely,
given an SVM score on a label pair , the edge weight from node
to the sink node is the and the edge weight
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from node n to source node is , where C is a
constant. The constant C ensures that all edge weights are non-
negative (so C must be larger than the maximum magnitude of
the SVM scores).
Bidirectional edges connecting two object parts (nodes) are

assigned a weight based on the sizes of the neighboring nodes
relative to the largest node in the graph (i.e., the largest object
part in the object). For an edge connecting node n1 to node n2,

, where is the area of node n1 and
is the area of the largest node. For an edge connecting node
n2 to node n1, . Therefore, larger object parts
exert greater influence on the labels of neighboring object parts.
This grouping process gives a clear improvement in our results
[Fig. 8(b) and (c)].
To assign a final label we use the Pareto optimal method, a

simple “majority vote” procedure based on the output of the
three graphs . For each object part
(node), each graph provides one “winning” label: (“em-
bryo”), (“larva”), or (“adult worm”). Since three
graphs are associated with each object part, there are three win-
ners per part. If one label wins twice, then this becomes the final
label of the part. If all three labels receive one vote each, the final
label is ambiguous, and we call it “no label.”
Output Graph: The final output is presented by a unique

graph that contains the final label assigned to each
node , including the possible label “no label.” Note that each
of the region boundaries outputs one ,
i.e., the final output is one graph per object.
Parameters: The SVMs were trained using the radial basis

function kernel. Cross-validation was used to select the best pa-
rameters for training. For all three SVMs, the optimal parame-
ters were , , and .

E. Layer 4: Counting Developmental Stages

Layer 4 computes counts of the different developmental
stages using the size distributions of object labels provided
by Layer 3. Our goal is to count the number of C. elegans
larvae and embryos in each image, which form the basis for
the quantitative phenotypic analysis of embryonic lethality in
our HTP primary screens. The size of an embryo is expected
to remain constant across images, and the expected number of
pixels per embryo (which we call the embryo “unit size”) can
be empirically learned from manually labeled data. We can
then estimate the number of embryos in each new image from
the ratio (total area covered by embryos)/(embryo unit size).
In contrast, the sizes of adults and larvae can vary greatly,

depending on the availability of food, the number of animals in
the well, and the time the image is acquired. The final layer of
our system therefore focuses primarily on counting the larvae
and adult animals. In Layer 3, we trained SVMs to learn the
labels “larva” and “adult” for each object part from a wide va-
riety of images containing a range of animal sizes. This produces
some overlap between the size distributions of adults and larvae,
leading to the occasional misclassification of animals (see Fig. 9
for an example).
In Layer 4, we thus developed a method to obtain more ac-

curate counts of adults and larvae by correcting for labeling er-
rors using the size distributions of labeled objects in each image.

Fig. 9. Size distributions of labeled objects can be used to detect and correct
mislabeled outliers. (a) Output from Layer 3, labeling of all objects: embryos
(green), larvae (blue), adults (red). Larvae mislabeled as “adult” are highlighted
(dashed circles). (b) Objects labeled as “larva” (blue points) or “adult” (red
points) from (a), plotted by the area per self-match. Lines represent extracted
size distributions from Layer 4 for larvae (blue) and adults (red). The red points
falling within the distribution for larvae (dashed circle) correspond to the mis-
labeled larvae in (a) and are relabeled as “larva.”

We know that the majority of images contain more larvae than
adults and mislabeling events are infrequent, so we can cor-
rect for mislabeling between the two stages as follows: 1) uti-
lizing their higher numbers, we first extract the size distribution
of larvae for each image; 2) we then remove from the image
all objects that fall within the variance of this distribution; and
3) we use the remaining objects to extract the size distribution
of the adults. Specifically, we use the feature “animal area per
self-match” to define the size distributions. We then relabel out-
liers with the label of the closest distribution.
After correcting for any mislabeling, we would like to con-

vert the labeled objects (often consisting of multiple animals)
into unit counts of individual animals. As described above (see
Layer 2), self-matches in an object skeleton are associated to
the tips of adults and larvae (Fig. 7(a) shows an example). In-
dividual animals will have two self-matches, so we can use the
number of self-matches to obtain a count of animals within each
object.
Units: There are region boundaries and so

labeled graphs with a label assigned to each node ,
including the possible label “no label.”
Scores: Given a region boundary , the score for each

label ( or “larva,” or “adult”) is the total area of the
nodes assigned that label divided by the number of self-matches
in nodes assigned that label.
Grouping: If the image contains at least twice as many larvae

as adult C. elegans, we first relabel the data with a grouping
mechanism. A robust regression method is fit to the variable
“area per self-match” for all data labeled “larva” and “adult”
(Fig. 9). Due to the greater number of larvae than adults, the re-
gression line will fit to the larva data and the adult worm data
will be considered as outliers. At this point, we can relabel any
data labeled “adult” that falls within the variance of the regres-
sion line for the larvae. We then remove all data labeled “larva”
and perform robust regression a second time on the remaining
data to extract the regression line for the adult animals (see
Fig. 9). In this way, we are able to correct the labeling output
for adults and larvae from Layer 3.
If the image does not contain more than twice as many larvae

as adults, we do not have enough data to perform this grouping
technique, so we do not attempt any relabeling.
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Fig. 10. Examples of results from DevStaR Layer 3. Shown are populations of
a C. elegans strain carrying a ts allele of the essential gene par-1, at four dif-
ferent temperatures. With increasing temperature these animals exhibit higher
levels of embryonic lethality, reflecting progressive loss of gene function (i.e., at
15 embryos hatch and produce larvae, whereas at 25 embryos die and no
larvae hatch). Top: original images. Bottom: DevStaR Layer 3 output, in which
each pixel is assigned a label: “adult” (red), “larva” (blue), “embryo” (green),
or “background” (white).

Final Output: The final output of Layer 4 is the count of
embryos, larvae, and adults per image. For embryos, the count
estimate is found by dividing the total number of pixels labeled
“embryo” by the embryo unit size (in our images, 70 pixels).
To obtain count estimates for larvae and adult C. elegans, we
divide the number of self-matches from all object parts with
these respective labels by two. If an object has an odd number
of self-matches, we round up the number of self-matches to the
next even integer before dividing by two in order to account for
occlusions.

IV. RESULTS

To illustrate DevStaR performance, we applied it to measure
the embryonic lethality of C. elegans strains carrying tempera-
ture-sensitive (ts) alleles of genes that are essential for embry-
onic development. Such ts alleles lead to reduced gene function,
and therefore higher embryonic lethality, with increasing tem-
perature. Fig. 10 shows examples of DevStaR pixel labeling re-
sults for a population of animals carrying a ts allele of par-1 at
four temperatures.
In this section, we present comparisons of the phenotypemea-

sured byDevStaR to the phenotypemeasured bymanual scoring
and show that DevStaR compares favorably at different levels
of embryonic lethality, both for quantitative manual scoring of
a small sample set and qualitative manual scoring of data from
HTP screens. We evaluate each layer of DevStaR, with its as-
sociated parameters, to determine their individual contributions
to performance. Finally, we show that the measurement error
of DevStaR can be reduced by increasing either biological or
image replicates.

A. Comparison With Quantitative Manual Scoring

We would like to compare embryonic survival calculated
using DevStaR with the true survival rate. However, measuring
the actual number of animals at each developmental stage in
every well is nontrivial. Without access to a COPAS BIOSORT
to obtain physical counts, manual annotation remains the most
accurate alternative method available. We do this by labeling
individual objects in an image of a well using an image-editing

Fig. 11. Effect of bias correction on embryonic survival calculated using De-
vStaR versus manual counts. Each point represents a comparison of the sur-
vival rate based on DevStaR (x axis) and manual (y axis) counts for one image.
Black lines represents expectation for perfect correlation; deviations from the
line show differences in survival rates calculated by the two methods. (a) Re-
sults without bias correction, where sum of squared error = 17.4. Note consistent
underestimation by DevStaR at high survival rates. (b) Results with bias correc-
tion (sum of squared error = 0.447).

tool. For larvae, we draw one dot on each larva we observe in
the image, and then count the dots. For embryos, we color all
of the image pixels that represent embryos, and divide the total
pixel area by an empirically determined constant for single
embryo size (since, again, it is generally impractical to count
individual embryos by eye due to clumping). This counting
technique takes approximately 40 min per image.
Using this method of manual annotation, we counted the

number of larvae and embryos in 70 images of populations of
C. elegans exhibiting a range of embryonic survival, and we
compared the results with DevStaR counts from the same im-
ages. Overall, we find that at higher embryonic survival, when
growth is more robust and the wells become very crowded, De-
vStaR tends to underestimate embryonic survival [Fig. 11(a)].
Crowding contributes to overestimation of lethality in two
ways: first, it creates many occlusions, which can lead to under-
counting the number of larvae; and second, when many animals
are in the well they can push any debris (such as eggshells)
into clumps, which resemble—and therefore will typically be
counted as—clumps of embryos, leading to overestimation of
the number of embryos.
To compensate for this issue, we assume there exists a bias in

DevStaR phenotype measurements that scales with the number
of larvae, and that we can find this bias to correct survival esti-
mates. We represent computed survival as

where is the count of the number of larvae and is the count
of the number of embryos obtained by DevStaR. We can then
use the manual counts from the same images to findan that min-
imizes the error between the two

The bias correction [Fig. 11(b)] reduces the sum of the
squared error based on manual and DevStaR counts from 17.14
to 0.447. The Pearson correlation coefficient is 0.97.
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B. Performance Evaluation of Each DevStaR Layer

In order to evaluate the contribution that each layer and asso-
ciated parameters make to DevStaR performance, we have com-
pared results of each layer to manually annotated features in the
same images. These features are well positions (for L0), object
segmentation (for L1), or counts presented in the previous sec-
tion (for L2, L3, and L4).
Layer 0: Attention (Area of Interest): To evaluate the per-

formance of Layer 0 we manually annotated the well position
for 13 images. We then compared DevStaR well location to the
manually annotated location. The average precision and recall
for DevStaR’s identification of within-well pixels across the 13
images is 0.94 and 1.0, respectively, showing that DevStaR is
able to locate the well accurately.
Layer 1:Background Removal and Object Segmentation: To

evaluate Layer 1 we compared the performance of our new seg-
mentation method with that of our previously published min-cut
method [16]. Image segmentation presents two particular chal-
lenges. First, the method should accurately segment all images
in the database without parameter adjustments, despite large
variations in illumination and intensity. Second, to facilitate the
labeling of developmental stages, segmentation accuracy must
be as high as possible especially for the most difficult objects:
small, thin objects whose boundary contour represents a large
proportion of their total object area—in particular larvae, which
are both small and of low contrast.
As an external standard, we manually segmented the objects

in five images, totaling 1242 objects (connected components).
We chose images with a wide variation in illumination and
containing many larvae because these are the hardest images
to segment (images are shown in supplementary Fig. 1). We
perform manual segmentation by coloring individual pixels as
foreground, which takes approximately 3–4 h per image. When
comparing segmentation pixel-by-pixel, different methods vary
slightly in boundary location detection due to small variations
in intensity cut-off at object boundaries. These minor variations
in object boundary do not change the shape structure so do not
lead to labeling errors. Thus, when optimizing DevStaR we are
more concerned with badly segmented objects with gross shape
errors (missing large parts of the object, or segmenting noise)
that can cause significant labeling errors.
We compared segmentation methods by counting the propor-

tion of total objects across the five images that were “well-seg-
mented” at different thresholds of segmentation accuracy, where
accuracy is defined as the fraction of correctly labeled pixels
within an object [Fig. 12(a)]. The results of these comparisons
showed that DevStaR Layer 1 can more accurately segment
greater numbers of objects without parameter adjustments over
a wide range of image illumination and that it effectively seg-
ments even small, low contrast objects.
To demonstrate the performance of DevStaR layers L2, L3,

and L4, we show the change in performance of DevStaR, on the
manually-counted data presented in the previous section and in
Fig. 11, as we adjust the parameters for these layers.
Layer 2: Object Parts: To evaluate the performance of the

skeleton algorithm in breaking objects into parts and extracting
features for the SVMs, we measured DevStaR performance

Fig. 12. Performance analysis of DevStaR layers. (a) Layer 1: Performance of
segmentation technique used in Layer 1 (L1) and min-cut method described in
[16], with respect to manual annotation of five images (shown in Supplementary
Fig. 1). The proportion of total objects that were “well-segmented” by each
method was evaluated at three different thresholds of minimum segmentation
accuracy, where accuracy is defined as the proportion of correctly labeled pixels
within an object: (TP+TN)/(TP+FN). (b) Layers 2–4: Sum of squared error in
DevStaR phenotype with respect to manually counted phenotype (using data
shown in Fig. 11 for different parameter values in DevStaR Layers 2, 3, and 4.

using various fixed parameters or using our new method to
select automatically, which depends on object size. As an-
ticipated, automated selection performed significantly better
than any fixed parameter [Fig. 12(b)]. This is because our
images contain objects of significantly different scales (larvae
and adults), and to obtain a good skeleton for both requires that
we automatically determine from the shape of the object.
We also evaluated performance with and without the ca-

pability of finding skeletons on shapes with more than one
boundary contour (shapes with holes). Fig. 12(b) shows that
applying the skeleton to multiple boundary contours improves
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performance, though to a smaller extent than tuning the
parameter. This is because there are often few shapes with
holes, whereas an incorrect parameter usually affects many
objects in the image.
Layer 3: Object Labeling: The performance of the SVMs

used in Layer 3 is shown by the ROC curves in Fig. 8(c). The
min-cut grouping technique used by DevStaR attempts to cor-
rect any SVM mislabeling events by allowing the influence of
neighboring labels. The parameter determines the strength
of neighbor influence, and we evaluated DevStaR performance
at different values of in comparison with manual annotation
[Fig. 12(b)]. For fixed , the best performing value is ,
where the sum of the squared error = 0.46 (versus a value of
0.526 when , i.e., no neighbor influence). Automatic se-
lection of based on the sizes of neighboring parts (the method
used by DevStaR and described above) achieves better perfor-
mance than any fixed (sum of squared error = 0.447). These
results demonstrate that neighbor influence does affect DevStaR
performance and that using the size of neighboring parts to de-
termine the strength of the influence gives the greatest perfor-
mance improvement. The parameter has a smaller effect than
the J parameter because of the already high performance of the
SVMs; thus label correction might only affect a small propor-
tion of the objects in the image, leading to small changes in mea-
sured phenotype. However, in cases where an object that is a
large clump of eggs is incorrectly labeled, label correction can
have a huge effect on the resulting phenotype, and this is where
the min-cut grouping with neighbor influence can most prevent
phenotype measurement errors.
Layer 4: Counting Developmental Stages: The reduction

in error with respect to manual annotation that is achieved by
the label correction mechanism of Layer 4 is relatively small
[Fig. 12(b)]. This is due both to infrequent mislabeling of larvae
as adult worms and to the small proportion of images where
larvae have grown larger than usual. Large larvae typically
result from greater food availability (e.g., due to few adults
and high embryonic lethality) or delayed recording of images
(allowing more growth time). Thus, while label correction may
have a small overall effect on error, for certain images it will
be an important step to achieving an accurate phenotype.

C. Comparison With Semi-Quantitative Manual Scoring

In order to validate the utility of DevStaR in the context of
HTP applications, we compared DevStaR developmental stage
counts with semi-quantitative manual scoring of image data ac-
quired in an HTP RNAi screen. The data set used for compar-
ison comprised 30 000 manually scored images of C. elegans
populations spanning a large range of embryonic survival. For
manual scoring, each image was assigned two integers ranging
from 0 to 9 (one for larvae and one for embryos), representing
zero animals at the respective developmental stage to the max-
imum number of animals at that stage observed across all the im-
ages. This graded scoring scale was selected, after testing larger
and smaller ranges, to provide the most intuitive level of sub-
jective discrimination by a human. The manual scores represent
200 h of work and were all assigned by the same individual.

A static reference panel showing representative images for all

Fig. 13. Comparison of DevStaR results with qualitative manual scoring. (a)
Reproducibility of manual estimates of survival in two rounds of blind scoring
of 200 images. Each image was assigned one of 10 qualitative categories rep-
resenting 0%–100% survival. Bar heights represent the proportion of images
with “consistent” category labels, as defined by three different methods: an
exact label match, e.g., {3,3} (black bars); an exact or first-neighbor category
match, e.g., {8,9} (gray bars); or an exact, first-neighbor, or second-neighbor
(e.g., {5,7}) category match (white bars). Reproducibility increases as the strin-
gency for a “consistent” match is relaxed. (b) DevStaR performance compared
with qualitative manual scoring on 30 000 images, performed as outlined above.
DevStaR “correct” prediction rate on ten-fold cross validation, defined as an
exact or first-neighbor overlap for larvae, and as an exact, first-neighbor, or
second-neighbor overlap for embryos. Bar heights represent the “correct” pre-
diction rate using one image (black) or three images (white) for training and
prediction. The prediction rate by DevStaR using three images is on par with
the reproducibility of manual scoring at the same stringency.

embryo and larva score categories was visible for all analyses
(Supplementary Fig. 2).
We emphasize that, in practice, it is not feasible for a human to

count precisely the developmental stages in HTP experiments,
since it takes on average around 40 min for a human to count the
objects in one image. Instead these qualitative scores represent
estimates of embryo and larva counts, which, after training, take
15–30 s per image. Depending on the experimental setup and
level of detail required, other scoring systems may be used for
semi-quantitative estimates.
In order to obtain meaningful comparisons between DevStaR

and semi-quantitative manual scoring, it is therefore important
to consider only the resolution at which the manual scoring is
reproducible. We first evaluated how consistently a human as-
signs categories to each developmental stage, based on blind
scoring of 200 images in duplicate [Fig. 13(a)]. We found that
the proportion of images assigned the same category in the two
rounds of scoring (the “match rate”) was low: 37% for embryos
and 66% for larvae. These results indicate that a human cannot
reliably discriminate between 10 categories for these develop-
mental stages. Next, we relaxed the criteria for a “consistent”
match by allowing neighboring categories to count as a match.
For example, a first-neighbor match would allow an image as-
signed 3 in one round of scoring to be considered as consis-
tent if it received 2, 3, or 4 in the second round. If we allow
matching between both first- and second-neighbor categories,
then for example a 3 would count as a consistent match with any
value spanning 1–5. With these relaxed criteria, we were able to
achieve above 90% correct match rate for larvae by allowing
first-neighbor matches and for embryos by allowing first- or
second-neighbor matches. These results show us the resolution
at which semi-quantitative manual scoring of larvae and em-
bryos is reliable using this 10 point system.
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In order to compare the results from DevStaR with this semi-
quantitative scoring scheme, we first performed 10-fold cross-
validation to learn the best correspondence between DevStaR
counts and manual category assignments. Specifically, we used
90% of the 30 000 scored images to learn the distribution of
DevStaR counts for each of the 10 manually defined categories
for each developmental stage (Supplementary Fig. 3). With the
remaining 10% of the data, we calculated the probability that the
DevStaR counts for each image could represent a sample from
the distribution for each category, and we assigned to the image
the category with the highest probability.
Using the relaxed criteria described above that define the res-

olution of manual scoring (first-neighbor matches for larvae and
first/second-neighbor matches for embryos), we then compared
the predicted and human categories [Fig. 13(b)] and found that
DevStaR achieved a correct rate of 89% for larvae and 83% for
embryos. We also tested using the average DevStaR count over
three images (with the same manual score) to learn and predict
the categories—the rationale being that biological experiments
are often performed with replicates, so usually more than one
image is available to estimate the underlying phenotype. Using
the average of three images (and again using the relaxed criteria
that define the resolution of manual scoring), we were able to
obtain a correct match rate greater than 95% for both embryos
and larvae [Fig. 13(b)]. These results show that DevStaR can be
used to score HTP screens in place of manual scoring without a
loss in accuracy.

D. Measurement Error of DevStaR

We evaluated the reproducibility and resolution of DevStaR
results by examining the variation in measurements for tech-
nical or biological replicates. To this end, we acquired a total of
3840 images: 10 image replicates for every well in individual
96-well plates of populations carrying the mbk-2 ts allele, ac-
quired at each of four temperatures (thus, 960 images at each
temperature). The resulting data are similar to the examples
shown in Fig. 10.
We first computed embryonic survival at each temperature

using the 10 replicate images per well for each of the 96 wells
as our estimate of the survival in the population, and then used
this population estimate to analyze the sampling error among
technical and biological replicates. For technical replicates, we
analyzed multiple snapshots of a single well: since the animals
inside the well are moving, each picture is different, but the ac-
tual number of each developmental stage inside the well remains
constant. We evaluated our measurements as a function of the
number of independent snapshots per well, considering sample
sizes ranging from 1–10 images, and used the Student’s dis-
tribution to obtain a 95% confidence interval around the sample
mean for the true mean of embryonic survival (Fig. 14, blue
line). For biological replicates, we performed the same exercise
but compared single snapshots of different wells from the same
plate (Fig. 14, red line). From these results we observe that the
confidence interval shrinks as the sample size increases for both
image and biological replicates. Thus, the measurement error of
an underlying phenotype decreases as either biological or tech-
nical replicates are increased.

Fig. 14. Confidence interval of the mean from DevStaR measurements. CI de-
creases as the number of either image replicates (blue) or biological replicates
(red) is increased.

We can also use these data to measure the resolution that can
be obtained with DevStaR in measuring embryonic lethality.
Here, for example, we expect to achieve a measurement error
of 4% embryonic lethality using four image replicates in an
experiment. Using four biological replicates, the confidence in-
terval is 6% embryonic lethality, and this value comprises both
the measurement error of the entire experimental system and
natural biological variation. This suggests that the difference in
embryonic lethality between two populations ofC. elegansmust
be greater than 6% in order to be distinguishable as two distinct
phenotypes that are not attributable to measurement error or bi-
ological variation. Moreover, this resolution exceeds that which
can be obtained by even semi-quantitative manual scoring.

V. CONCLUSION

DevStaR can rapidly and accurately segment, label and count
developmental stages in populations of C. elegans, and there-
fore is a useful tool to measure embryonic lethality in mixed
populations in a high-throughput context. In our lab, we have so
far used DevStaR to score over four million images from mul-
tiple genetic interaction screens, producing results with much
greater resolution and speed than would otherwise be possible
by manual analysis. DevStaR thus enables high-throughput
screens in C. elegans that were previously impractical or simply
unfeasible, opening up many new opportunities for genetic and
chemical genomic screening.
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